TUTi

Introduction to Deep
Learning (12DL)

Exercise 10: Semantic Segmentation

Today's Outline

« Exercise 09 Example Solutions

« Exercise 10: Semantic Segmentation
— Task & Loss Function
— Architecture and Upsampling

TUTi

Exercise 9: Solutions

Facial Keypoints
(1, 96, 96) grayscale image
Score: 1/(2"MSE)

Threshold: Score of 100
(< MSE < 0.005)

Case Study: Model

nn. Conv2d(1, 32, (3, 3), stride=1, padding=2), |

nn. DropoutZd(O 2),

nn.PReLU(),

Classic ConvNet architecture:
o Feature extraction

nn.MaxPool2d(3), |

nn.Conv2d(32, 64, (3, 3), stride=1l, padding=2),

nn.BatchNorm2d (64 @ CLaSS|ﬁCat|On
nn.PReLU(),

nn.MaxPool2d(3, stride=2),|

A 4

nn. Conv2d(64 64 (3 3), stride=1, padding=1) .
4 5 .' y - d . Flatten(),

nn.Linear (10368, 256),
nnPRﬂM(h # nn.BatchNormld(256),
nn.Dropout(0.1),
nn.PReLU(),

nn.MaxPool2d(2, stride=2),|

nn.Conv2d(64, 128, (2, 2), stride=1, padding=1)|

7 [111 , ba NNOI'MZO O
nn.Dropout2d(0.3),
nn.PReLU(),

nn.Linear (256, 30),

Case Study: Model Summary

#!pip install torchsummary

import torchsummary

torchsummary.summary (model, (1, 96, 96))

Layer (type) Output Shape Param #
Conv2d-1 [-1, 32, 98, 98] 320
PRelLU-2 [-1, 32, 98, 98] 1
MaxPool2d-3 [-1, 32, 32, 32]]
Conv2d-4 [-1, 64, 34, 34] 18,496
PReLU-5 [-1, 64, 34, 34] 1
MaxPool2d-6 [-1, 64, 16, 16] 3]
Conv2d-7 [-1, 64, 16, 16] 36,928
PReLU-8 [-1, 64, 16, 16] 1
MaxPool2d-9 [-1, 64, B, B @
Conv2d-16 [-1, 128, 9, 9# 32,896
LU-11 -1, 128, 9 9] 1
Flatten-12 [-1, 1@368] @
Linear-13 [-1, 256] 2,654,464
Dropout-14 [-1, 256] 3]
PRelLU-15 [-1, 256] 1
Linear-16 [-1, 38] 7,718

Total params: 2,750,819

Trainable params: 2,750,819
Non-trainable params: @

Input size (MB): ©.84
Forward/backward pass size (MB): 6.72
Params size (MB): 108.49

Estimated Total Size (MB): 17.25

(OxOx128 - 10368)

Flatten(),

nn.Linear (10368, 256),
nn.BatchNormld(256),
nn.Dropout(0.1),
nn.PReLU(),

nn.Linear (256, 30),

Case Study: Smaller Linear Layer?

1. Convolutional layer to reduce
Size 1o 1x1 I
— Here: gxg kernel, 128 filters, no padding | |
_S 1XIX128 - 128 Extration Pooling FC

2. Global Average Pooling (GAP)

— Here: gxg kernel => 128

— Disadvantage: lose spatial relations
3. Flatten

— Solutions: first use 1x1 convolutions

Case Study: With 1xa1 Conv

After adding 1x1 layers
nn.Conv2d(128, 16,
Flatten(),

nn.Linear(9+*9%16, 256),

(1,

1),

stride=1, padding=@),

torchsummary.summary (model, (1, 96, 96))

Layer (type) Output Shape Param #
Conv2d-1 [-1, 32, 98, 98] 320
PReLU-2 [-1, 32, 98, 98] 1
MaxPool2d-3 [-1, 32, 32, 32] 8]
Conv2d-4 [-1, 64, 34, 34] 18,496
PReLU-5 [-1, 64, 34, 34] 1
MaxPool2d-6 [-1, 64, 16, 18] 2]
Conv2d-7 [-1, 64, 16, 16] 36,928
PRelLU-8 [-1, 64, 16, 16] 1
MaxPool2d-9 [-1, &4, &, 8] o]
Conv2d-18 [-1, 128, 9, 9] 32,896
PReLU-11 [-1, 128, 9, 9] 1
Conv2d-12 [-1, 16, 9, 9] 2,064
Flatten-13 [-1, 1296] 2]
Linear-14 [-1, 256] 332,832
Dropout-15 [-1, 256]
PRelLU-16 [-1, 256] 1
Linear-17 [-1, 38] 7.718

Total params: 438,451

Trainable params: 430,451
Non-trainable params: @

Input size (MB): 0.04
Forward/backward pass size (MB): 6.66
Params size (MB): 1.64

Estimated Total Size (MB): 8.34

Next steps:
Make deeper and use residual
connection to make it train

Case Study: Hyperparameters

hparams = {
"lr": 0.0001,
"batch size": 512,
TODO: if you have any model arguments/hparams, define them here

}

« Default learning rate
« Experiment with batch normalization / Dropout

« Forms of RelLU activations (PRel_u, ELU)

« Appropriate weignt initialization

Exercise 10
Semantic
Segmentation

Semantic Segmentation

Input:
(3xWxH) RGB image

Output:

(23xWxH) segmentation
map with scores for every
class in every pixel

11

Semantic Segmentation Labels

‘void" for unlabelle
pixels

Metrics: Loss Function

« Averaged per pixel cross-entropy loss

for (inputs, targets) in train data[0:4]:
inputs, targets = inputs, targets
outputs = dummy model (inputs.unsqueeze(0))
l}oss = torch.nn. CrossEntropyLoss(lgnore index=-1, reduction='mean)I
losses = loss(outputs, targets unsqueeze(O))
print(losses)

* ignore_index (int, optional) - Specifies a target value that is ignored and does not contribute to the input

gradient. When size_average is True,the loss is averaged over non-ignored targets.

13

Metrics: Accuracy

« Only consider pixels which are not ,void’

def evaluate model (model):
test_scores = []
model.eval()
for inputs, targets in test_loader:
inputs, targets = inputs.to(device), targets.to(device)

outputs = model.forward(inputs)

; preds = torch.max(outputs, 1)
targets _mask = targets >= 0
test_scores.append(np.mean((preds == targets)[targets _mask].data.cpu().numpy()))

return np.mean(test_scores)
print("Test accuracy: {:.3f}".format(evaluate model (dummy model)))

14

TUTi

Model Architecture

Semantic Segmentation Task

« Input shape: (N, num_channels, H, \W/)
Output shape: (N, num_classed, H, \W)

« We want to
— Maintain dimensionality (H, \¥/)
— Get features at different spatial resolutions

N<"

77’/:
:

S

Image source: https.//distillpub/2017/feature-
vierializatinn /

https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/

Nalve Solution

« Keep dimensionality constant throughout the network
« Use increasing filter sizes

'/ vz Conv Conv Conv Conv argmax
—r —r — —_— —_—
¥
4 o .
1 4

Scores: Predictions:
CxHxW Hxw

Convolutions:
DxHxW

e Problem:

— Increased memory consumption

* Filter size would be the same
ed. 128 filters a (64x3x3) -> 73k params

« But we have to save inputs and outputs for every layer
e.g. 128 filters a (64xWxH) -> millions of params!

Image source: towardsdatascience.com - Divyanshu 17
NA~lAr~

Excursion: Receptive Field (RF)

* Region in input space a feature

« Eg., after 2 (5x5) convolutions»
receptive field of gxg
(RF after first conv: 5
RE after second conv: 5+4)

Image source: medium.com - Dang Ha The Hien

18

Coming from Classification

« Use strided convolutions and pooling to increase the
receptive field

« Upsample result to input resolution

convolution

Dt 7

H/4 x W/4 H/8 x WI8 H/16 x W/16 H/32 x W/32 Hx W

19

Better Solution

« Slowly reduce size -> slowly increase size
— Pooling -> Upsampling
— Strided convolution -> Transposed convolution
« Combine with normal convolutions, bn, dropout, etc

Image source: https.//hackernoon.com/autoencoders-deep-learning-bits-1-

Q44T N4~ A N

Transposed Convolutions

¢ Upsampling with learnable parameters

Input Kernel Output
0|0 0|1 00| 1

0|1 0 1
=|0|0 + 2|13(+]0]2 + 0|3 (|[=|0|4]6

213 213
416 619 4 112 9

« Qutput size computation:

— Regular conv layer:
(in — kernel + 2 * pad)
out = +1
stride
— Transpose convolution for multiples of 2

out = (m - 1) * stride — 2 * pad + kernel

ranspo: ele tforthee
more -"f'-t::; here httDC //Q|thub Com/\/dumoulm/con\/ amthmenc

Image source: towardsdatascience.com - Divyanshu

N A ol o

Are transpose convolutions superior?

Short answer: no, Not always

Long answer: possible checkerboard artifacts for

general iImage generation, see

https.//distilloub/2016/deconv-checkerboard/
(B BN BN BN BN B BN

i

My personal go-to:
— Regular upsampling, followed by a convolution layer

22

https://distill.pub/2016/deconv-checkerboard/
https://distill.pub/2016/deconv-checkerboard/
https://distill.pub/2016/deconv-checkerboard/

HOW 1O compete/ get results
quickly?

& | Z
s Z @)

Encoder Decoder

« Transfer Learning!

« Possible solutions
— "The Oldschool
Take pretrained Encoder, set up decoder and only train decoder
Encoder candidates: AlexNet, MobileNets
— 'The Lazy’
Take a fully pretrained network and adjust outputs

Good luck &
see you next week

©

	幻灯片 1: Introduction to Deep Learning (I2DL)
	幻灯片 2: Today‘s Outline
	幻灯片 3: Exercise 9: Solutions
	幻灯片 4: Facial Keypoints
	幻灯片 5: Case Study: Model
	幻灯片 6: Case Study: Model Summary
	幻灯片 7: Case Study: Smaller Linear Layer?
	幻灯片 8: Case Study: With 1x1 Conv
	幻灯片 9: Case Study: Hyperparameters
	幻灯片 10: Exercise 10 Semantic Segmentation
	幻灯片 11: Semantic Segmentation
	幻灯片 12: Semantic Segmentation Labels
	幻灯片 13: Metrics: Loss Function
	幻灯片 14: Metrics: Accuracy
	幻灯片 15: Model Architecture
	幻灯片 16: Semantic Segmentation Task
	幻灯片 17: Naive Solution
	幻灯片 18: Excursion: Receptive Field (RF)
	幻灯片 19: Coming from Classification
	幻灯片 20: Better Solution
	幻灯片 21: Transposed Convolutions
	幻灯片 22: Are transpose convolutions superior?
	幻灯片 23: How to compete/get results quickly?
	幻灯片 24

